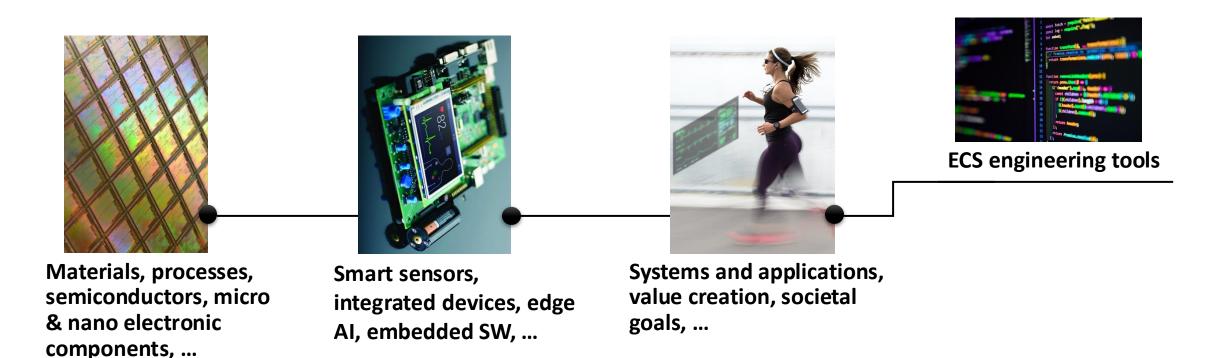
ECS-SRIA 2025

Paolo Azzoni

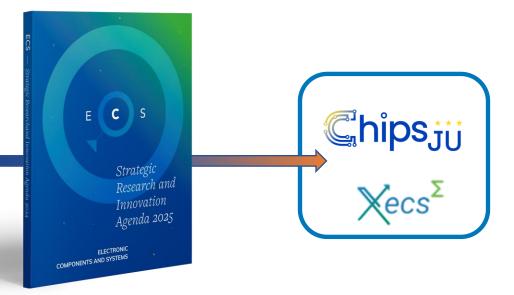
Secretary General

INSIDE Industry Association

Chips JU 2025 Information Day, Rome, 01/04/2025



The 2025 ECS SRIA – What?


- Presenting research topics to be investigated over next 15 years
- To foster and accelerate our European digital transformation reflecting European values
- Covering the whole value chain of Electronic Components & Systems (ECS)

ECS SRIA 2025 – Why?

Align and coordinate research policies across Europe

Patrick Cogez

Paolo Azzoni INSIDE IA Co-chairman

The 2025 ECS SRIA – Who?

Core Team

- Arco Krijgsman ASML
- Christophe Wyon CEA
- Jerker Delsing Lulea University of Technology
- Jürgen Niehaus SafeTRANS
- Patrick Pype NXP
- Sven Rzepka Fraunhofer
- Wolfgang Dettmann Infineon Technologies AG

Matthias Küntzel **EPoSS** Co-chairman

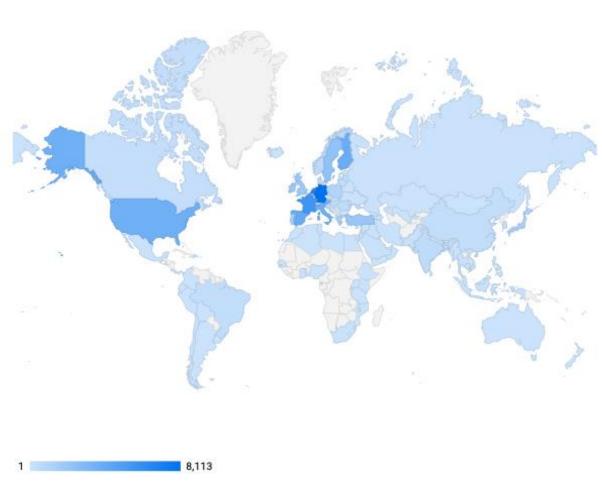
AENEAS

Chairman


More than 280 European experts

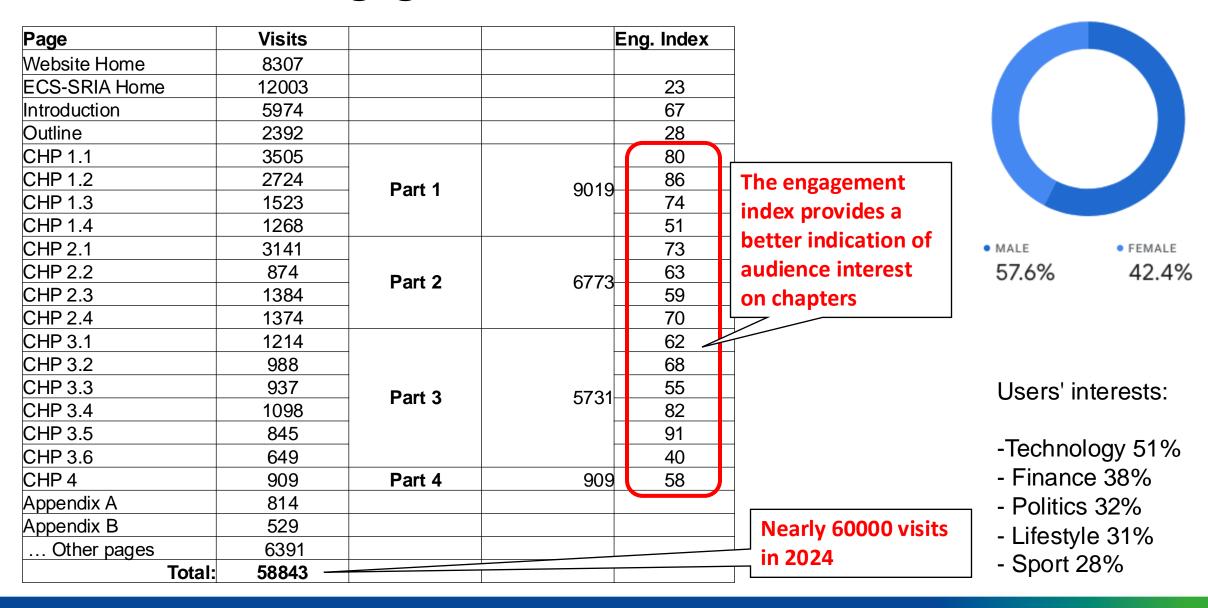
- Interdisciplinary
- Across the whole ECS value chain
- Representing industry, RTO and academia
- 24 countries

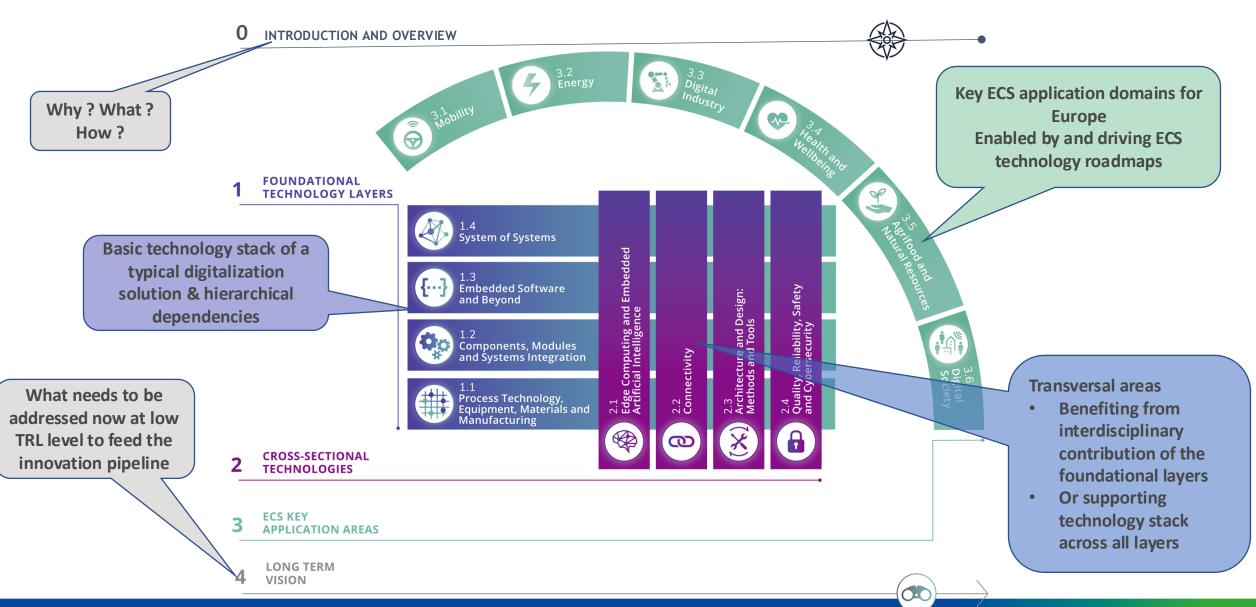
ECS SRIA 2025 is online


https://ecssria.eu/

- Native indexing and analytics
- More advanced functionalities for:
 - Topics search
 - Selective reading

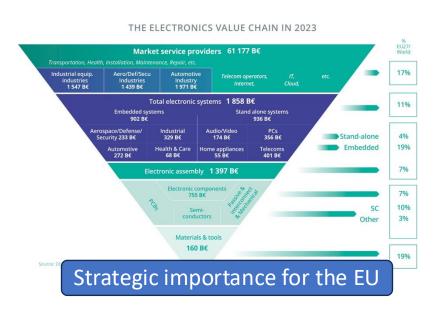
- Increased visibility and accessibility
 - Attract new talents and experts


Global reach out


	Country	Views -	
1.	Germany	8,113	
2.	Netherlands	6,551	
3.	France	5,476	
4.	Spain	4,023	
5.	Finland	3,875	
6.	Italy	3,714	
7.	United States	3,680	
8.	Austria	3,601	
9.	Belgium	3,026	
10.	Sweden	2,291	
11.	Türkiye	2,008	
12.	United Kingdom	1,812	
13.	Ireland	1,789	
14.	Portugal	1,247	
15.	Japan	1,244	
16.	Greece	1,214	
17.	Poland	992	
18.	Switzerland	780	
19.	Taiwan	721	
20.	Norway	554	
21.	India	498	
22.	Hungary	461	
23.	Latvia	444	

Visited from 120 countries

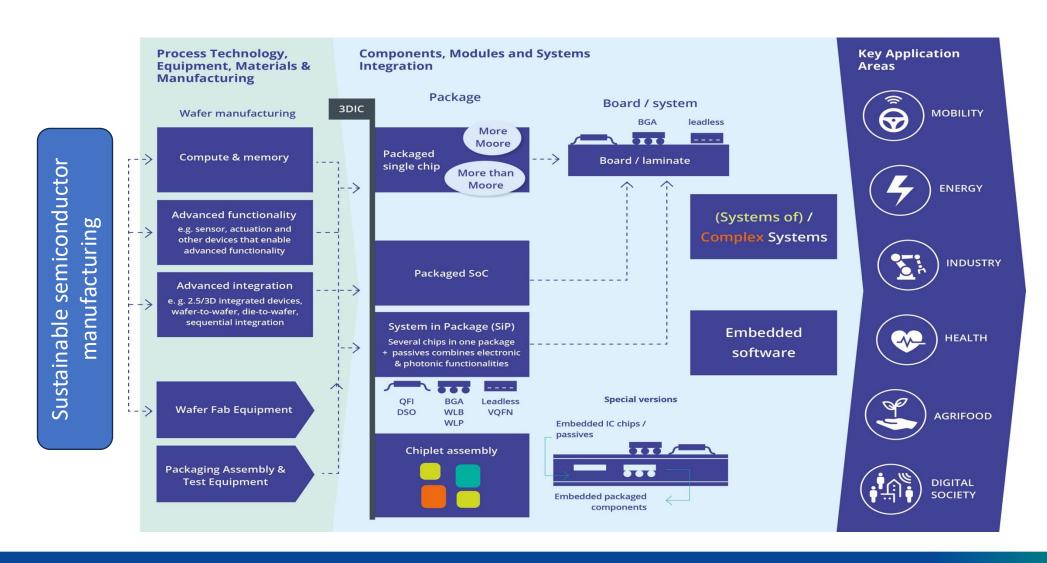
Visits and engagement index


ECS-SRIA structure

ECS-SRIA 2025 updates

Ch. 0 - Restructured in Why / What / How

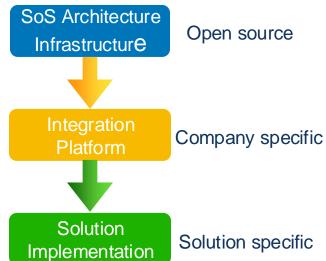
Why ECS matter



What? SRIA content, including new and/or expanded cross-cutting themes

- How to make it happen
 - Link with Pilot Lines and the Design Platform

Ch. 1.1 - Process Technology, Equipment, Materials and Manufacturing & Ch. 1.2 – Components, Modules and Systems Integration


Ch. 1.3 – Embedded Software and Beyond & Ch. 1.4 – System of Systems

 Scale and complexity of System and SoS integration, monitoring and management over its life cycle

- Including sustainability dimension
- Importance of engineering efficiency
 - Embedded software
 - New programming languages (Rust)
 - Virtualisation and virtual prototypes
 - System of Systems
 - Model based engineering
 - Low code technologies
 - Al supported engineering tools
 - Automation of test, verification and validation processes

Key trends in embedded Software

- Quantum Computing
- Computing accelerators
- Artificial Intelligence

SoS infrastructure concept

- Enabling company and application specific platforms
- Enabling efficient engineering of solutions

Ch. 2.1 - Key trends

More and more convergence between edge computing and embedded (generative) AI, but **still a lot of edge will be without AI**

Emergence of *Gen-Al at the edge*

New Recommendations:

- A system becomes an orchestration of federated services, distributed or centralized (Software Defined X).
- Disaggregation of complex SoC into chiplet + interposers, but still no ecosystem of interoperable chiplets and overall architecture.
- **Memory cost is crucial for generative AI at the edge**. New innovations required to avoid to waste RAM
- Emergence of (very) cheap Chinese Risc-V microcontrollers
- Further *reducing standby power* and fast on operation (stop and go for chips?)
- Still research required for *new computing paradigms* (neuromorphic, *using physics to make computation* analog computing -, etc) and their *validation* in product ready solutions.

Ch. 2.2 – Connectivity

LAYER		DATA UNIT	FUNTION
	7. Application		Network process to application.
HOST LAYERS	6. Presentation	Data	Data representation, encryption and decryption, convert machine-dependent data to machine-independent data
	5. Session		Interhost comunication, managing sessions between applications.
	4. Transport	Segments	Reliable delivery of segments between points on a network.
	3. Network	Packet/Datagram	Addressing, routing and (not necessarily reliable) delivery of datagrams between points on a network.
MEDIA LAYERS	2. Data link	Bit/Frame	A reliable direct point-to-point data connection.
	1. Physical	Bit	A (not necessarily reliable) direct point-to-point data connection.

- Updates to the frequency scope of wireless connectivity
 - Downplaying significantly higher frequencies
- Support for efficient engineering of application solution connectivity
- Support to SoS integration and interoperability

Ch. 2.3 – Architecture and Design: Methods and Tools & Ch. 2.4 – Quality, Reliability, Safety and Cybersecurity

Architecture and Design

- Ever increasing functionality and complexity of ECS based systems comprising heterogeneous subsystems and components
- Agile continuous development processes by using data collected during run-time (and production, maintenance,...)
- Al a curse and a blessing
 - Increased use of AI in components and subsystems, with corresponding challenges for quality and safety assurance
 - Advanced productivity and cost-effectiveness by using AI in Development and Test
- Need for sustainable design for sustainability

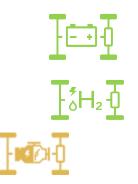
Quality, Reliability, Safety and Cybersecurity

- A degraded behaviour in any of these 4 dimensions or an incorrect integration among them, would affect vital properties of ECS and could cause serious damage
- Rethink many "traditional" approaches and expected performances towards safety and security, exploiting AI and ML (machine learning)
- New text on
 - Chiplet-based approach
 - Al innovation & safety and cybersecurity issues

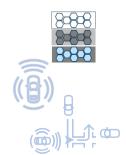
Ch. 3.1 – Mobility

Mobility modes considered in chapter:

- **Automotive mobility** for passengers and goods: passenger cars, two/three wheelers, trucks
- Maritime mobility: ships
- **Aerospace mobility** for passengers and goods: airplanes, helicopters, drones
- Mobility on rails: trains
- Mobility in smart farming and off-road machinery: smart farming machinery, smart mining, ...


Automation level

- Vehicles supported by ADAS (advanced driver assistance systems)
- **Automated** and autonomous vehicles (AD)
- Software defined vehicles (in-vehicle stack, offvehicle cloud stack) (Infotainment, cockpit, ADAS/AD, Body & chassis control)


Energy type

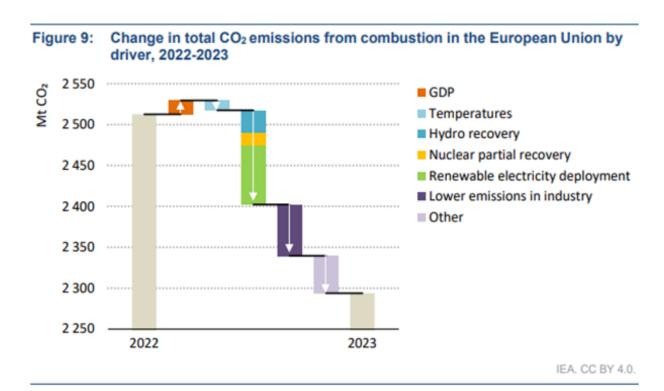
- Battery electric vehicles (trains, passenger cars, trucks, off-road machinery, airplanes)
- Hydrogen powered vehicles (trains, passenger cars, trucks, off-road machinery, airplanes)
- **Hvbrid** vehicles

Areas for ECS

- **HPC HW** and **SW** for **Stacks** in mobility (e.g. SDV)
- HW and SW for ADAS/AD sensors
- **Automated driving** for various mobility modes
- Fast and energy efficient power converter chips (SiC, GaN)
- Al supported engineering tools and toolchains to significantly increase development efficiency in DevOps processes

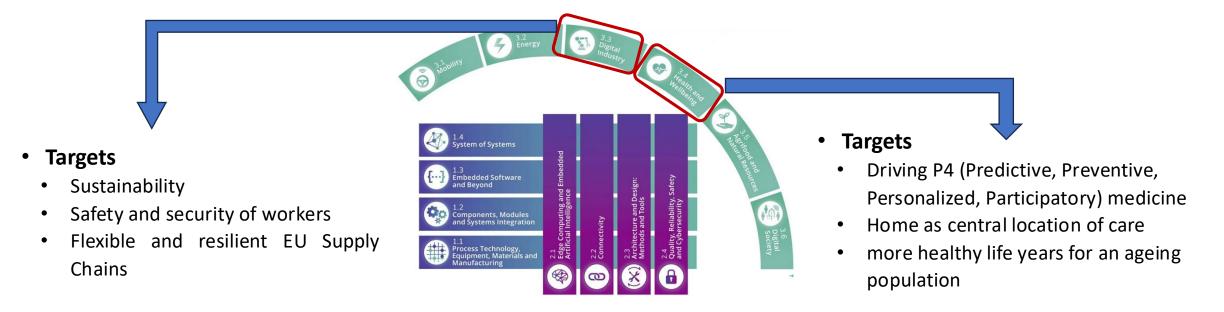
Ch 3.1 - Major challenges in ECS for Mobility

- Major challenge 1: SDV hardware platforms: Modular, scalable, flexible, safe & secure
- Major challenge 2: SW Platforms for SDV of the future;
 Modular, scalable, re-usable, flexible, safe & secure, supporting edge2cloud applications
- Major challenge 3: Climate and energy neutral mobility: CO₂neutral mobility
- Major challenge 4: Digitalisation: Affordable, automated, and connected mobility for passengers and freight
- Major challenge 5: Edge2cloud mobility applications: Added end-user value by cloud2cloud features
- Major challenge 6: Validation: Methods and tools using AI for validation and certification of safety, security, and comfort in mobility


These 2 challenges were combined in one topic in SRIA 2024

Multimodal mobility — moved to chapter "Digital Society" in SRIA 2025

Ch. 3.2 – Energy


Electronic components and systems (ECS) are key to future energy systems being optimised in both design and operation, for high efficiency, substitution to zero emission technologies, low CO2-emissions, cost, and security of supply.

IEA (2024), CO2 Emissions in 2023, IEA, Paris https://www.iea.org/reports/co2-emissions-in-2023, Licence: CC BY 4.0

Ch. 3.3 - Digital industry & Ch. 3.4 - Health and Wellbeing

Impact of introduction of cutting-edge digital technologies

Key ECS research threads

- Trustworthy, responsible AI, XR and robotics
- Exploitation of next generation HW architectures and new chip design (e.g. RISC-V, PIC)

Key trends

- MedTech and Pharma moving towards comprehensive healthcare platforms using smart devices, remote monitoring, data analytics, and AI
- Blurring the boundaries between Pharma, MedTech, and Chips companies, fostering cross-industry collaboration

Ch. 3.5 – Agrifood and natural resources & Ch. 3.6 – Digital Society

- Targets
 - Meet global food needs
 - Safeguarding farmers' livelihoods
 - Contributing to decarbonisation
 - Slowing climate change and limiting its impact
- 1.4
 System of Systems

 1.3
 Empedded Software and Beyond

 2.2
 Architecture and Design:
 Methods and Systems Integration

 2.3
 Architecture and Design:
 Methods and Tools

 2.4
 Architecture and Design:
 Methods and Tools

 3.5
 Architecture and Design:
 Methods and Tools

 3.6
 Architecture and Design:
 Methods and Cybersecurity

 4.7
 Architecture and Design:
 Methods and Tools

 5.6
 Architecture and Design:
 Methods and Cybersecurity

 5.7
 Architecture and Design:
 Methods and Cybersecurity

 6.8
 Architecture and Design:
 Methods and Tools

 6.9
 Architecture and Design:
 Methods and Tools

 7.7
 Architecture and Design:
 Methods and Tools

 7.7
 Architecture and Design:
 Methods and Tools

 8.7
 Architecture and Design:
 Methods and Tools

 8.7
 Architecture and Design:
 Methods and Tools

 9.7
 Architecture and Design:
 Methods and Me

- Target
 - Foster an inclusive, sustainable, and resilient society

- Accelerate the deployment of smart systems in agriculture, food production, natural resources and ecosystems
 - Increase electrification and use of agrivoltaics solutions
 - Increase the development of agroforestry
 - Introduce IoT solutions based on AI
 - Provide education and agriculture-based services
 - Reducing food loss and waste

Trends

- Digitisation
- Use of Al-based tools (such as ChatGPT, ...)
- Increasing need to protect against fake video and audio
- Increasing importance of cybersecurity

Ch. 4 - Long Term Vision Chapter

Identify the research subjects that need to be addressed now at low TRL in order to feed the pipeline of innovation of the European ECS ecosystem in the longer term

Major topics:

- Sustainability
 - Energy, power, water in chemical processes
 - Recyclable devices
 - Environmental aspects
 - Innovative materials
- Quantum technologies and enabling ECS
- Distributed intelligence (includes "Distributed AI", "Embedded AI", etc.)
- Connectivity (Information transfer, connectivity for system integration, security issues)
- Non-conventional computing and storage devices
- Advanced packaging and heterogeneous integration technologies and tools
- Autonomous systems
- Resilient (robotic) applications
- Supply chain issues

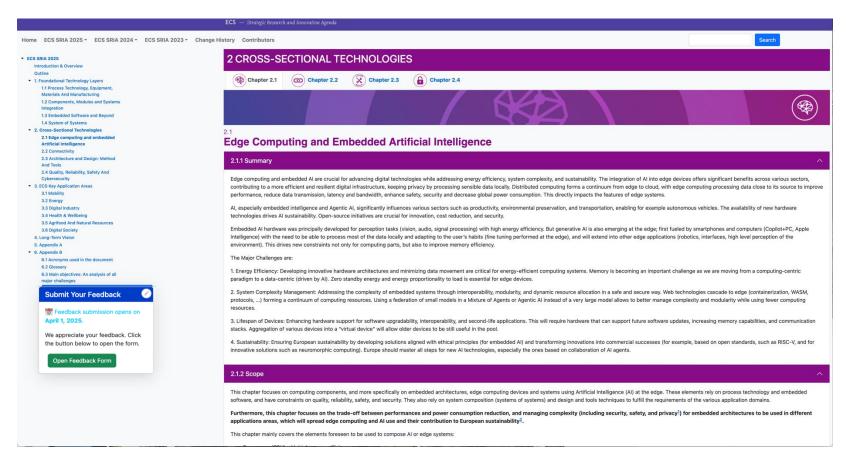
ECS-SRIA 2026

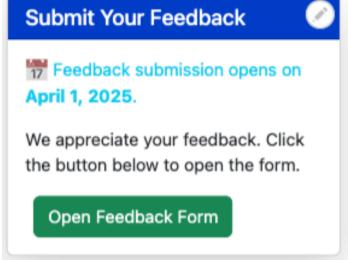
ECS-SRIA 2026

- ECS-SRIA 2026 Chaired by EPOSS
 - Elisabeth Steinmetz vdivde-it
 - Christoph Hesse vdivde-it
- K.O. hold on 19/02/2025 ECS Brokerage Event.
- Confirmed the important role for our community, Chips JU and Xecs.
- High visibility and reputation / world-wide recognition.
- EC estimates the high level of content but is missing strategic guidance and priority setting by the ECS-SRIA.
- The influence of the ECS SRIA as basis for the bottom-up calls in the Chips JU was reduced during the last years (more and more Focus Topic Calls and larger investments in the Chips 4 EU initiative).

Change request process overview

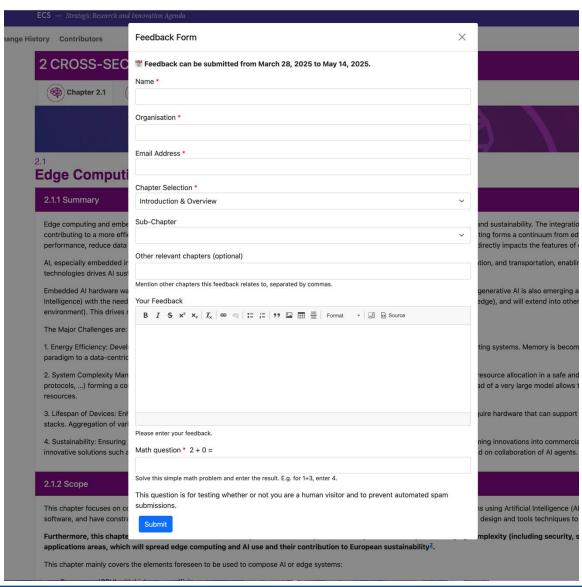
Open consultation

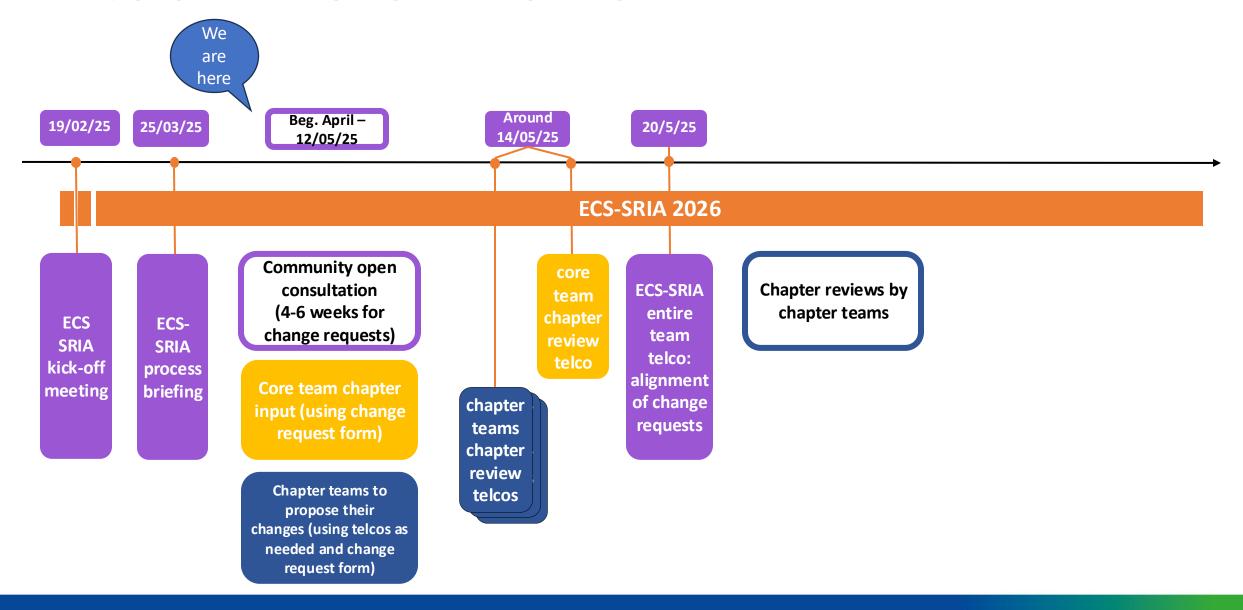

The community can submit change requests to the ECS-SRIA team through an online form during a consultation period (...)


- All changes are collected in a tracking system
- Approval and implementation status is tracked
- Chapter teams and Core team use the request form as well
- After the consultation period, the changes are reviewed and aligned
- The rest of the yearly process remains similar to the previous years

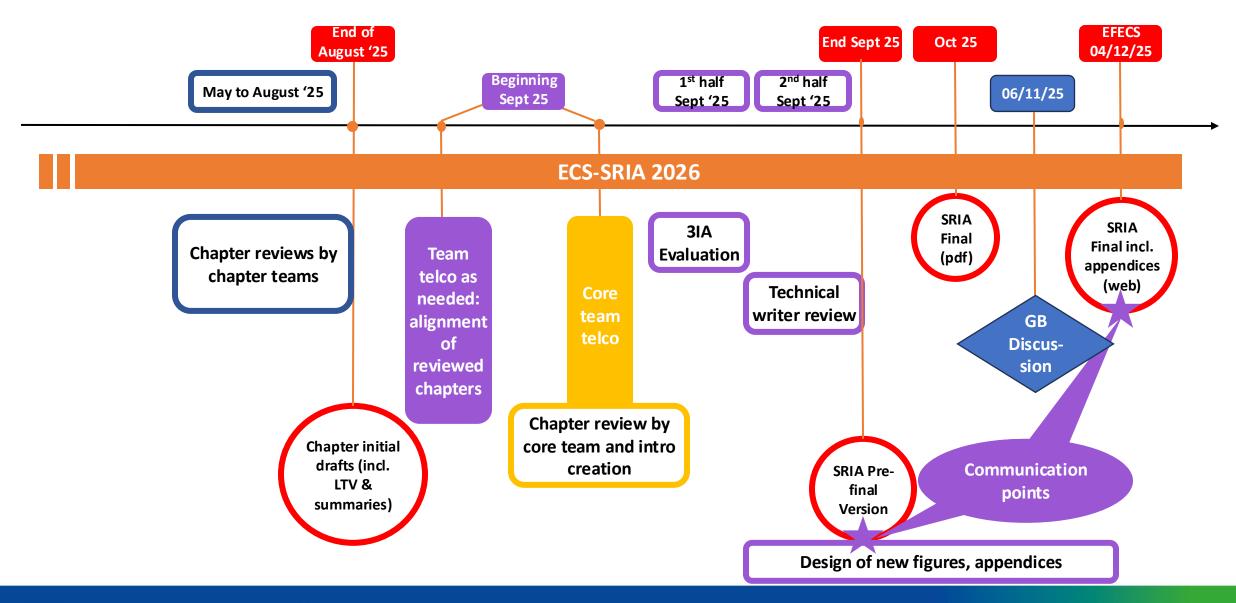
The change request submission form

- Where to find it: In the ECS SRIA 2025 view
- What can be submitted:
 - Contact information
 - Formatted text including images
 - Sub-Chapter
 - Affected additional chapters
- Security check
- At each request, a new excel is created with all requests up to now.
- Email is sent to two chapter leaders


The change request submission form (2)


Open consultation start date to be confirmed!

The change request submission form (3)



The feedback form includes a WYSIWYG editor, allowing to provide text in a rich format and include also images.

ECS SRIA 2026 Timeline - 1

ECS SRIA 2026 Timeline - 2 - preliminary

Thanks for you attention